The adding of each discovered prime's incremental step information to
the mapping should be postponed until the candidate number reaches the
primes square, as it is useless before that point. This drastically
reduces the space complexity from O(n/log(n)) to O(sqrt(n/log(n))), in n
primes produced, and also lowers the run time complexity due to the use
of the hash table based HashMap, which is much more efficient for large
ranges.
package com.rizvi.so;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
// generates all prime numbers up to about 10 ^ 19 if one can wait 100's of years or so...
// practical range is about 10^14 in a week or so...
public class SoEPagedOdds implements Iterator<Long> {
private final int BFSZ = 1 << 16;
private final int BFBTS = BFSZ * 32;
private final int BFRNG = BFBTS * 2;
private long bi = -1;
private long lowi = 0;
private final ArrayList<Integer> bpa = new ArrayList<>();
private Iterator<Long> bps;
private final int[] buf = new int[BFSZ];
@Override
public boolean hasNext() {
return true;
}
@Override
public Long next() {
if (this.bi < 1) {
if (this.bi < 0) {
this.bi = 0;
return 2L;
}
// this.bi muxt be 0
long nxt = 3 + (this.lowi << 1) + BFRNG;
if (this.lowi <= 0) { // special culling for first page as no base
// primes yet:
for (int i = 0, p = 3, sqr = 9; sqr < nxt; i++, p += 2, sqr = p
* p)
if ((this.buf[i >>> 5] & (1 << (i & 31))) == 0)
for (int j = (sqr - 3) >> 1; j < BFBTS; j += p)
this.buf[j >>> 5] |= 1 << (j & 31);
} else { // after the first page:
for (int i = 0; i < this.buf.length; i++)
this.buf[i] = 0; // clear the sieve buffer
if (this.bpa.isEmpty()) { // if this is the first page after the
// zero one:
this.bps = new SoEPagedOdds(); // initialize separate base
// primes stream:
this.bps.next(); // advance past the only even prime of two
this.bpa.add(this.bps.next().intValue()); // get the next
// prime (3 in
// this case)
}
// get enough base primes for the page range...
for (long p = this.bpa.get(this.bpa.size() - 1), sqr = p * p; sqr < nxt; p = this.bps
.next(), this.bpa.add((int) p), sqr = p * p)
;
for (int i = 0; i < this.bpa.size() - 1; i++) {
long p = this.bpa.get(i);
long s = (p * p - 3) >>> 1;
if (s >= this.lowi) // adjust start index based on page
// lower limit...
s -= this.lowi;
else {
long r = (this.lowi - s) % p;
s = (r != 0) ? p - r : 0;
}
for (int j = (int) s; j < BFBTS; j += p)
this.buf[j >>> 5] |= 1 << (j & 31);
}
}
}
while ((this.bi < BFBTS)
&& ((this.buf[(int) this.bi >>> 5] & (1 << ((int) this.bi & 31))) != 0))
this.bi++; // find next marker still with prime status
if (this.bi < BFBTS) // within buffer: output computed prime
return 3 + ((this.lowi + this.bi++) << 1);
else { // beyond buffer range: advance buffer
this.bi = 0;
this.lowi += BFBTS;
return this.next(); // and recursively loop
}
}
public static void main(String[] args) {
long n = 1000000000;
// long n = 100;
long strt = System.currentTimeMillis();
long startTime = System.nanoTime();
Iterator<Long> gen = new SoEPagedOdds();
List<Long> primeList = new ArrayList<Long>();
int count = 0;
// while (gen.next() <= n) {
// count++;
// }
while (gen.hasNext()) {
Long val = gen.next();
if (val <= n) {
count++;
// System.out.println("" + val);
} else {
break;
}
}
long estimatedTime = System.nanoTime() - startTime;
System.out.println("TIme taken: " + estimatedTime);
long elpsd = System.currentTimeMillis() - strt;
System.out.println("Found " + count + " primes up to " + n + " in "
+ elpsd + " milliseconds.");
}
@Override
public void remove() {
// TODO Auto-generated method stub
}
}
Found 50847534 primes up to 1000000000 in 6838 milliseconds.
Sample Code:
// This code is more faster than beforepackage com.rizvi.so;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
// generates all prime numbers up to about 10 ^ 19 if one can wait 100's of years or so...
// practical range is about 10^14 in a week or so...
public class SoEPagedOdds implements Iterator<Long> {
private final int BFSZ = 1 << 16;
private final int BFBTS = BFSZ * 32;
private final int BFRNG = BFBTS * 2;
private long bi = -1;
private long lowi = 0;
private final ArrayList<Integer> bpa = new ArrayList<>();
private Iterator<Long> bps;
private final int[] buf = new int[BFSZ];
@Override
public boolean hasNext() {
return true;
}
@Override
public Long next() {
if (this.bi < 1) {
if (this.bi < 0) {
this.bi = 0;
return 2L;
}
// this.bi muxt be 0
long nxt = 3 + (this.lowi << 1) + BFRNG;
if (this.lowi <= 0) { // special culling for first page as no base
// primes yet:
for (int i = 0, p = 3, sqr = 9; sqr < nxt; i++, p += 2, sqr = p
* p)
if ((this.buf[i >>> 5] & (1 << (i & 31))) == 0)
for (int j = (sqr - 3) >> 1; j < BFBTS; j += p)
this.buf[j >>> 5] |= 1 << (j & 31);
} else { // after the first page:
for (int i = 0; i < this.buf.length; i++)
this.buf[i] = 0; // clear the sieve buffer
if (this.bpa.isEmpty()) { // if this is the first page after the
// zero one:
this.bps = new SoEPagedOdds(); // initialize separate base
// primes stream:
this.bps.next(); // advance past the only even prime of two
this.bpa.add(this.bps.next().intValue()); // get the next
// prime (3 in
// this case)
}
// get enough base primes for the page range...
for (long p = this.bpa.get(this.bpa.size() - 1), sqr = p * p; sqr < nxt; p = this.bps
.next(), this.bpa.add((int) p), sqr = p * p)
;
for (int i = 0; i < this.bpa.size() - 1; i++) {
long p = this.bpa.get(i);
long s = (p * p - 3) >>> 1;
if (s >= this.lowi) // adjust start index based on page
// lower limit...
s -= this.lowi;
else {
long r = (this.lowi - s) % p;
s = (r != 0) ? p - r : 0;
}
for (int j = (int) s; j < BFBTS; j += p)
this.buf[j >>> 5] |= 1 << (j & 31);
}
}
}
while ((this.bi < BFBTS)
&& ((this.buf[(int) this.bi >>> 5] & (1 << ((int) this.bi & 31))) != 0))
this.bi++; // find next marker still with prime status
if (this.bi < BFBTS) // within buffer: output computed prime
return 3 + ((this.lowi + this.bi++) << 1);
else { // beyond buffer range: advance buffer
this.bi = 0;
this.lowi += BFBTS;
return this.next(); // and recursively loop
}
}
public static void main(String[] args) {
long n = 1000000000;
// long n = 100;
long strt = System.currentTimeMillis();
long startTime = System.nanoTime();
Iterator<Long> gen = new SoEPagedOdds();
List<Long> primeList = new ArrayList<Long>();
int count = 0;
// while (gen.next() <= n) {
// count++;
// }
while (gen.hasNext()) {
Long val = gen.next();
if (val <= n) {
count++;
// System.out.println("" + val);
} else {
break;
}
}
long estimatedTime = System.nanoTime() - startTime;
System.out.println("TIme taken: " + estimatedTime);
long elpsd = System.currentTimeMillis() - strt;
System.out.println("Found " + count + " primes up to " + n + " in "
+ elpsd + " milliseconds.");
}
@Override
public void remove() {
// TODO Auto-generated method stub
}
}
Output:
TIme taken: 6836980702Found 50847534 primes up to 1000000000 in 6838 milliseconds.
No comments:
Post a Comment